Pages

Labels

Powered by Blogger.

Sunday, September 29, 2013

Tentang Matematika


Pengertian Matematika

Matematika diambil dari bahasa Yunani, μαθηματικάmathēmatiká) Perkataan itu mempunyai akar kata mathema yang berarti pengetahuan atau ilmu (knowledge,science),  secara umum ditegaskan sebagai penelitian pola dari struktur, perubahan,dan ruang: tak lebih resmi, seorang mungkin mengatakan adalah penelitian bilangan dan angka. Dalam pandangan formalis, matematika adalah pemeriksaan aksioma yang menegaskan struktur abstrak menggunakan logika simbolik dan notasi matematika; pandangan lain tergambar dalam filosofi matematika. Beberapa aliran dalam filsafat matematika:
1)    Aliran Logistik
Dipelopori oleh Immanuel Kant (1724 – 1804). Immanuel berpendapat bahwa matematika merupakan cara logis (logistik) yang salah atau benarnya dapat ditentukan tanpa mempelajari dunia empiris. Matematika murni merupakan cabang dari logika, konsep matematika dapat di reduksikan menjadi konsep logika.
2)    Aliran Intuisionis
Dipelopori oleh Jan Brouwer (1881 – 1966). Brouwer berpendapat bahwa matematika itu bersifat intusionis. Intuisi murni dari berhitung merupakan titik tolak tentang matematika bilangan. Hakekat sebuah bilangan harus dapat dibentuk melalui kegiatan intuitif dalam berhitung dan menghitung.
3)    Aliran Formalis
Dipelopori  :  David Hilbert (1862 – 1943). Hilbert berpendapat bahwa matematika merupakan pengetahuan tentang struktur formal dari lambang. Kaum formalis menekankan pada aspek formal dari matematika sebagai bahasa lambang dan mengusahakan konsistensi dalam penggunaan matematika sebagai bahasa lambang. Kaum Formalis membantah aliran logistik dan menyatakan bahwa masalah-masalah dalam logika sama sekali tidak ada hubungan dengan matematika. Matematika adalah cara berpikir yang digunakan untuk memecahkan semua jenis persoalan. Matematika bila ditinjau dari segi epistemology ilmu  bukanlah ilmu. Ia lebih merupakan artificial yang bersifat eksak, cermat dan terbebas dari rona emosi. Matematika adalah logika yang telah berkembang, yang memberikan sifat kuantitatif kepada pengetahuan keilmuan. Matematika merupakan sarana berfikir deduktif yang amat berguna untuk membangun teori keilmuan dan menurunkan prediksi-prediksi daripadanya, dan untuk mengkomunikasikan hasil-hasil kegiatan keilmuan dengan benar dan jelas dan secara singkat dan jelas. Matematika adalah bahasa  yang melambangkan serangkaian makna dari pernyataan yang ingin kita sampaikan. Lambang-lambang matematika mempunyai “artificial” yang baru mempunyai arti setelah sebuah makna diberikan padanya.
  Hakekat Matematika
a.    Matematika sebagai sarana berpikir deduktif
Matematika dikenal dengan ilmu deduktif. Ini berarti proses pengerjaan matematika harus bersifat deduktif. Matematika tidak menerima generalisasi berdasarkan pengamatan (induktif), tetapi harus berdasarkan pembuktian deduktif. Meskipun demikian untuk membantu pemikiran pada tahap-tahap permulaan seringkali kita memerlukan bantuan contoh-contoh khusus atau ilustrasi geometris.
Perlu pula diketahui bahwa baik isi maupun metode mencari kebenaran dalam matematika berbeda dengan ilmu pengetahuan alam, apalagi dengan ilmu pengetahuan umum. Metode mencari kebenaran yang dipakai oleh matematika adalah ilmu deduktif, sedangkan oleh ilmu pengetahuan alam adalah metode induktif atau eksperimen.
Namun dalam matematika mencari kebenaran itu bisa dimulai dengan cara induktif, tetapi seterusnya generalisasi yang benar untuk semua keadaan harus bisa dibuktikan secara deduktif. Dalam matematika suatu generalisasi, sifat, teori atau dalil itu belum dapat diterima kebenarannya sebelum dapat dibuktikan secara deduktif.
Sebagai contoh, dalam ilmu biologi berdasarkan pada pengamatan, dari beberapa binatang menyusui ternyata selalu melahirkan. Sehingga kita bisa membuat generalisasi secara induktif bahwa setiap binatang menyusui adalah melahirkan.
Generalisasi yang dibenarkan dalam matematika adalah generalisasi yang telah dapat dibuktikan secara deduktif. Contoh: untuk pembuktian jumlah dua bilangan ganjil adalah bilangan genap. Pembuktian secara deduktif sebagai berikut : andaikan m dan n sembarang dua bilangan bulat maka 2m+1 dan 2n+1 tentunya masing-masing merupakan bilangan ganjil. Jika kita jumlahkan (2m+1)+(2n+1) = 2(m+n+1). Karena m dan n bilangan bulat maka  (m+n+1) bilangan bulat, sehingga 2(m+n+1) adalah bilangan genap. Jadi jumlah dua bilangan ganjil selalu genap.
b.    Matematika bersifat terstruktur
Menurut Ruseffendi (Tim MKPBM, 2001 ; 25) matematika mempelajari tentang pola keteraturan, tentang struktur yang terorganisasikan. Hal ini dimulai dari unsure-unsur yang tidak terdefinisikan kemudian pada unsure yang didefinisikan, ke aksioma/postulat dan akhirnya pada teorema. Konsep-konsep matematika tersusun secara hierarkis, terstruktur, logis, dan sistematis mulai dari konsep yang paling sederhana sampai pada konsep yang paling kompleks.
Dalam matematika terdapat topik atau konsep prasyarat sebagai dasar untuk memahami topik atau konsep selanjutnya. Ibaratmembangun rumah, maka fondasi harus kokoh. Contohnya konsep bilangan genap. Bilangan genap adalah bilangan bulat yang habis dibagi dua. Sebelum membahas blangan genap, siswa harus memahami dulu konsep bilangan bulat dan pengertian habis dibagi dua sebagai konsep prasyarat.
Dari unsur-unsur yang tidak terdefinisi itu selanjutnya dapat dibentuk unsur-unsur matematika yang terdefinisi. Misalnya segitiga adalah lengkungan tertutup sederhana yang merupakan gabungan dari tiga buah segmen garis.
Dari  unsur-unsur yang tidak terdefinisi dan unsure-unsur yang terdefinisi dapat dibuat asumsi-asumsi yang dikenal dengan aksioma atau postulat. Misalnya:  melalui sebuah titik sembarang hanya dapat  dibuat sebuah garis kesuatu titik yang lain.
Tahap selanjutnya dari unsure-unsur yang tidak terdefiisi , unsure-unsur yang terdefinsi , dan aksioma atau postulat dapat disusun teorema-teorema yang kebenarannya harus dibuktikan secara deduktif dan berlaku umum. Misalnya: jumlah ukuran ketiga sudut dalam sebuah segitiga adalah 180 derajat.
c.    Matematika sebagai Ratu dan Pelayan Ilmu
Matematika sebagai ratu atau ibunya ilmu dimaksudkan bahwa matematika adalah sebagai sumber dari ilmu yang lain dan pada perkembangannya tidak tergantung pada ilmu lain. Dengan kata lain, banyak ilmu-ilmu yang penemuan dan pengembangannya bergantung dari matematika. Sebagai contoh: banyak teori-teori dan cabang-cabang dari fisika dan kimia yang ditemukan dan dikembangkan melalui konsep kalkulus. Teori mendel pada Biologi melalui konsep pada probabilitas. Teori ekonomi melalui konsep fungsi dan sebagainya.
Dari kedudukan matematika sebagai ratu ilmu pengetahuan matemaika selain tumbuh dan berkembang untuk dirinya sendiri juga untuk melayani kebutuhan ilmu pengetahuan lainnya dalam pengembangan dan operasinya. Cabang matematika yang memenuhi fungsinya seperti yang disebutkan terakhir itu dinamakan dengan matematika Terapan(Applied Mathematic).
d.    Matematika sebagai bahasa
Matematika adalah bahasa yang melambangkan serangkaian makna dari pernyataan yang ingin kita sampaikan. Lambang-lambang matematika baru mempunyai arti setelah sebuah makna diberikan padanya. Tanpa itu maka matematika hanyalah merupakan kumpulan unsur-unsur yang mati.
Bahasa verbal mempunyai beberapa kekurangan yang sangat mengganggu karena terkadang mempunyai lebih dari satu arti. Untuk mengatasi kekurangan yang terdapat pada bahasa maka kita berpaling pada matematika. Dalam hal ini dapat kita katakan bahwa matematika adalah bahasa yang berusaha untuk menghilangkan sifat kabur, majemuk, danemosional dari bahasa verbal. Lambang-lambang darimatematika dibuat secara ”artifisial” yakni baru mempunyai arti setelah sebuah makna diberikan. Dan bersifat individual yaitu berlaku khusus untuk masalahyang sedang kita kaji.
e.    Matematika bersifat kuantitatif
Dengan bahasa verbal kita bisa membandingkan dua objek yang berlainan umpamanya  gajah dan semut, maka kita hanya bisa mengatakan gajah lebih besar daripada semut, kalau ingin menelusuri lebih lanjut berapa besar gajah dibandingkan dengan semut, maka kita mengalami kesulitan dalam mengemukakan hubungan itu, bila ingin mengetahui secara eksak berapa besar gajah bila dibandingkan dengan semut, maka dengan bahasa verbal tidak dapat mengatakan apa-apa.
Matematika mengembangkan konsep pengukuran, lewat pengukuran dapat mengetahui dengan tepat berapa panjang. Bahasa verbal hanya mampu mengemukakan pernyataan yang bersifat kualitatif. Kita mengetahui bahwa sebatang logam bila dipanaskan akan memanjang, tetapi tidak bisa mengatakan berapa besar pertambahan panjang logamnya.
Untuk itu matematika mengembangkan konsep pengukuran, lewat pengukuran , maka kita dapat mengetahui dengan tepat berapa panjang sebatang logam dan berapa pertambahannya bila dipanaskan, Dengan mengetahui hal ini maka pernyataan ilmiah yang berupa pernyataan kualitatif seperti sebatang logam bila dipanaskan akan memanjang, dpat diganti dengan pernyataan matematika yang lebih eksak umpamanya: P1 = Po (1 + n), dimana P1 adalah panjang logam pada temperatur t, Po merupakan panjang logam pada temperatur nol dan n merupakan koefisien pemuai logam tersebut.


  Karakteristik Matematika

  1. Memiliki obyek yang abstrak

Obyek dasar matematika adalah abstrak dan disebut obyek mental, obyek pikiran yaitu :
1.    Fakta
Berupa konvensi-konvensi yang di ungkap dengan simbol tertentu. Contoh : ”2” dipahami sebagai bilangan ”dua”, ”5-2” dipahami sebagai ”lima kurang dua”, ”//” bermakna ”sejajar” dan lain-lain
2.    Konsep
Konsep adalah ide abstrak yang dapat digunakan untuk menggolongkan sejumlah obyek. Apakah obyek tertentu merupakan konsep atau bukan.
3.    Operasi
Operasi adalah pengerjaan hitung, pengerjaan aljabar, dan pengerjaan matematika yang lain. Operasi adalah suatu relasi khusus karena operasi adalah aturan untuk memperoleh elemen tunggal dari satu atau lebih elemen yang diketahui. Contoh : operasi unair, operasi biner.
4.    Prinsip
Prinsip adalah obyek matemática yang komplek. Prinsip dapat terdiri dari beberapa fakta, beberapa konsep, yang dikaitkan oleh suatu relasi / operasi. Prinsip adalah hubungan antara berbagai obyek dasar matematika. Prinsip dapat berupa axioma , teorema, sifat dan lain-lain. Skill adalah prosedur atau suatu kumpulan aturan-aturan yang digunakan untuk menyelesaikan soal matematika.
b.    Bertumpu pada kesepakatan
Kesepakatan yang amat mendasar adalah axioma dan konsep primitif . Aksioma disebut juga postulat adalah pernyataan pangkal yang tidak perlu di buktikan . Konsep primitif disebut juga undefined term adalah pengertian pangkal yang tidak perlu di definisikan.
c.    Berpola pikir deduktif
Kebenaran suatu konsep atau pernyataan yang diperoleh sebagai akibat logis dari kebenaran sebelumnya sehingga kaitan Antar konsep atau pernyataan dalam matemática bersifat consisten. Proses pembuktian secara deduktif akan melibatkan teori atau rumus matemática lainnya yang sebelumnya sudad di buktikan kebenarannya secara deduktif juga.
d.    Memiliki simbol yang kosong dari arti
Contoh : Model persamaan ”x+y=z” belum tentu bermakna bilangan, makna huruf atau tanda itu tergantung dari permasalahan yang mengakibatkan terbentuknya model itu.
e.    Memperhatikan semesta pembicaraan
Bila semesta pembicaraannya adalah bilangan maka simbol-simbol diarikan bilangan. Contohnya: jika kita bicara di ruang lingkup vektor a + vektor b = vektor c maka huruf-huruf yang digunakan bukan berarti bilangan tetapi harus di artikan sebagai vektor
f.     Konsisten dalam sistemnya
Dalam matematika terdapat banyak sistem. Satu dengan yang lain bisa saling berkaitan tetapi juga bisa saling lepas. Sistem-sistem aljabar : sistem aksioma dari grup , sistem aksioma dari ring , sistem aksioma dari field, dsb. Sistem-sistem geometri : sistem geometri netral, sistem geometri Euclides , sistem geometri non Euclides . Di dalam masing-masing sistem dan struktur itu terdapat KONSISTENSI.

0 komentar:

Post a Comment

 
X-Steel - Wait